Rotablator®
Rotational Atherectomy System

MASTER THE COMPLEX

In-Service Presentation

Optimizing revascularization through innovation, training, and education.

- EDU: Education & Training
- CTO: Chronic Total Occlusion
- TB: Thrombus Burden
- PM: Plaque Modification
- X: Crossing
- SV: Small Vessel
- IVUS: Intravascular Ultrasound
- SVG: Saphenous Vein Graft
Nikola Pesic, Therapy representative for Eastern Europe and EURASIA
Boston Scientific
BELGRADE
because Paris, London & Rome are so passé...
Unmatched depth and breadth in Complex PCI with a unique and diversified portfolio that meets the market’s evolving needs.

MASTER THE COMPLEX

- **X**: Crossing
- **EDU**: Education & Training
- **TB**: Thrombus Burden
- **PM**: Plaque Modification
- **SVG**: Saphenous Vein Graft
- **IVUS**: Intravascular Ultrasound
- **FFR**: Fractional Flow Reserve
- **CTO**: Chronic Total Occlusion

Devices and Systems

- TRAPPER™ Exchange Device
- NC EMERGE™ PTCA Dilatation Catheter
- SENTAI™ Guidewires
- GUIDEZILLA™ Guide Extension Catheter
- THREADER™ Micro-Dilatation Catheter
- FILTERWIRE EZ™ Embolic Protection Device
- POLARIS™ Multi-Modality Guidance System
- OPTICROSS™ Coronary Imaging Catheter
- ANGIOJET™ Ultra Coronary Thrombectomy System
- WOLVERINE™ Cutting Balloon™ Dilatation Device
- ROTABLATOR™ Rotational Atherectomy System
- COMET™ Pressure Guidewire

CAUTION: TRAPPER Exchange Device is an investigational device in the U.S. Limited by Federal Law to investigational use only. Not for sale in the U.S.
What is the Rotablator System?

Rotational Atherectomy System

- Diamond-tipped burr designed to preferentially ablate calcium and fibrous plaque

System includes both capital equipment and disposable components

Capital Equipment

- Console
- Foot Pedal
- Air Tank

Disposables

- Wires
- Advancer
- Burr
- Rotaglide® Lubricant
Clinical Application

Why use Rotational Atherectomy?

Calcium is out there.
- The prevalence of severe calcium, defined as superficial in nature with greater than 180° arc, is estimated to present itself in 12% of cases using angiographic imaging. When IVUS guidance is used, it’s seen in approximately 26% of cases.¹

Calcium can preclude optimal stenting.
- Asymmetrical stent expansion occurs in up to 50% of cases where calcium is not treated before stent deployment.²

With DES, rotational atherectomy is an important tool for calcified lesions.
- Lesion preparation with compliance change for a calcified lesion can substantially facilitate stent delivery and symmetrical stent expansion for more homogeneous drug delivery.³

©2015 Boston Scientific Corporation or its affiliates. All rights reserved.
SPORT1 (Stent Implantation Post Rotational Atherectomy Trial)

• While moderate de-bulking did not significantly improve clinical outcomes (TVR and TLR), it did result in higher acute procedural success and larger final lumen diameters.

• The study limitations included a lesion subset of mostly lesions with minimal calcification where de-bulking with RA is known to be of limited value.

<table>
<thead>
<tr>
<th></th>
<th>ROTA + Stent (n=360)</th>
<th>PTCA + Stent (n=375)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Procedure MLD</td>
<td>2.81 ± 0.44</td>
<td>2.74 ± 0.40</td>
<td>p = 0.032</td>
</tr>
<tr>
<td>Acute Gain</td>
<td>1.94 ± 0.50</td>
<td>1.86 ± 0.48</td>
<td>p = 0.041</td>
</tr>
<tr>
<td>Technical Success</td>
<td>93.1%</td>
<td>87.7%</td>
<td>p = 0.0146</td>
</tr>
<tr>
<td>Procedure Success</td>
<td>93.6%</td>
<td>88.1%</td>
<td>p = 0.0114</td>
</tr>
<tr>
<td>Clinical Success</td>
<td>91.6%</td>
<td>87.0%</td>
<td>p = 0.0495</td>
</tr>
</tbody>
</table>

1 Buchbinder, M., et al, presentations at TCT 2001 & ACT 2001
Clinical Application

- Single 2.75 mm stent placed
- Post Dilatation: 3.5x9 mm non-compliant balloon for 30 seconds at 22 ATM followed by 4.0x9 mm non-compliant balloon for 30 seconds at 16 ATM. (figure 1)
- Results sub-optimal. (figure 2)

Lesions which initially appear as either treatable with PTCA or by stenting may benefit from pre-treatment with the Rotablator® Rotational Atherectomy System.

Using Rotablator System may favorably impact complications, acute angiographic results, TLR and angiographic restenosis in calcified and complex lesions.¹

Asymmetrical stent expansion occurs in up to 50% of cases where calcium is not treated before stent deployment.²

Results from case studies are not predictive of results in other cases. Results in other cases may vary.

Case images courtesy of Dr. Arthur Lee, Santa Clara Valley Medical Center, Kaiser Permanente, San Jose, CA

©2015 Boston Scientific Corporation or its affiliates. All rights reserved.
Mechanism of Action

Porcine Model*

Angioplasty result with vessel injury

Rotablator® System result with minimal vessel injury

Intended PTCRA benefits

- Minimizes vessel wall stretch and elastic recoil
- Eliminates vessel barotrauma
- Produces a smooth lumen/channel
- Facilitates stent delivery and expansion

*Porcine model results may not necessarily be indicative of clinical performance.
Rotational Atherectomy

Differential Cutting

- The Rotablator® Atherectomy System is designed to ablate the inelastic, calcified, atherosclerotic tissue making up plaque in coronary arteries
- All plaque is inelastic
- Helpful analogies:
 - Shaving
 - A nail file
Rotational Atherectomy

Plaque is ablated into small particles called microparticles:

- The size of the microparticles is less than 5 microns (smaller than a red blood cell)
- The microparticles are picked up by the RES (Reticuloendothelial System)
- Embolic protection filters designed for 100+ microns
Hardware

- Console
- DynaGlide™ foot pedal
- Tank, regulators, attachments
- Compressed air or nitrogen
Disposables

Components

- Advancer
- Burr Catheter
- WireClip® Torquer & Guidewires
- RotaGlide® Lubricant
Rotalink® Exchangeable Catheter

Catheter

- 135 cm in length
- Sheath is .058”

Burr

- Elliptical shaped with 2,000 to 3,000 microscopic diamond crystals on the distal edge. The proximal surface of the burr is smooth
- The brass burr is nickel coated
- The diamond crystals are 20 microns in size, with only 5 microns extruding from the nickel coating
Rotawire™ Floppy Guide Wire

330 cm total length

- Flexible and torqueable to enhance navigation
- Significantly reduced guidewire bias
- Short Spring Tip (2.2 cm)
- Light rail support
Rotawire™ Extra Support Guide Wire

- Spring Tip (2.6 cm)
- Lead wire for those physicians requiring a “stiffer” wire

330 cm total length
Physician Considerations

- Guide catheter with side holes
- Guide catheter that provides coaxial engagement will reduce unfavorable guidewire bias
- Guide catheter to accommodate the final burr size to be utilized

Recommended Curves

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q Curve®</td>
<td>FR4</td>
</tr>
<tr>
<td>CLS™</td>
<td>Multi-purpose</td>
</tr>
</tbody>
</table>

Quick Reference Burr Guide

<table>
<thead>
<tr>
<th>Burr Diameter</th>
<th>Recommended Guide Catheter</th>
<th>Minimum ID Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>Inches (French)*</td>
<td>(Inches)</td>
</tr>
<tr>
<td>1.25</td>
<td>0.049 6.0</td>
<td>0.060**</td>
</tr>
<tr>
<td>1.50</td>
<td>0.059 6.0</td>
<td>0.063</td>
</tr>
<tr>
<td>1.75</td>
<td>0.069 7.0</td>
<td>0.073</td>
</tr>
<tr>
<td>2.00</td>
<td>0.079 8.0</td>
<td>0.083</td>
</tr>
<tr>
<td>2.15</td>
<td>0.085 8.0</td>
<td>0.089</td>
</tr>
<tr>
<td>2.25</td>
<td>0.089 9.0</td>
<td>0.093</td>
</tr>
<tr>
<td>2.38</td>
<td>0.094 9.0</td>
<td>0.098</td>
</tr>
<tr>
<td>2.50</td>
<td>0.098 9.0</td>
<td>0.102</td>
</tr>
</tbody>
</table>

* Avoid abrupt primary and secondary curves.
MAIN OBJECTIVE OF CONTEMPORARY ROTATIONAL AHERECTOMY:

PLAQUE MODIFICATION
MAIN OBJECTIVE OF CONTEMPORARY ROTATIONAL AHERECTOMY:
PLAQUE MODIFICATION

Single, small burr (1.25mm to 1.50mm)

- To smoothen the lumen and disconnect the calcified coronary ring

- To facilitate balloon dilatation and stent implantation
PRE-PROCEDURAL RECOMMENDATIONS
GUIDE CATHETER SELECTION
- Single curve with strong support
- Most procedures can be performed with a 6 FR guiding catheter

PRE-PROCEDURAL RECOMMENDATIONS
GUIDEWIRE SELECTION
- Most procedures can be performed with the ROTAWIRE Floppy
- It is important to shape the ROTAWIRE tip smoothly

PRE-PROCEDURAL RECOMMENDATIONS
GUIDE CATHETER SELECTION

GUIDEWIRE SELECTION

BURR SELECTION
- Single, small burr (1.25 or 1.5 mm) works for the majority of lesions
- Consider a **burr-to-artery ratio of 0.6**

PRE-PROCEDURAL RECOMMENDATIONS
PACING CONSIDERATIONS
- Positioning a temporary pacemaker should be considered when treating the right coronary artery or dominant left circumflex
PROCEDURAL RECOMMENDATIONS
PROCEDURAL RECOMMENDATIONS

ABLATION SPEED
Between 135,000 and 180,000 rpm

RUN TIME
Short duration: individual runs < 30 secs
PROCEDURAL RECOMMENDATIONS

ABLATION SPEED
Pecking motion should be used to minimize deceleration

DECELERATION
Should be < 5,000 RPM
PROCEDURAL RECOMMENDATIONS

DOWNSIZING BURR

If the lesion cannot be crossed after several passes

ROTABLATION FLUSH

Cocktail with verapamil, nitrates and heparin in saline

recommended (5 mg/5 mg/5,000 U in 500 ml of saline)
WHEN TO STOP?

Sufficient plaque modification to achieve optimal balloon dilatation and stent implantation
TECHNIQUES TO AVOID COMPLICATIONS
TECHNIQUES TO AVOID COMPLICATIONS

SLOW FLOW

Technique to avoid
- Small burrs and lower speeds
- Be patient between ablation runs

Strategy for resolution
- Optimise BP if low
- Use of flush cocktail
TECHNIQUES TO AVOID COMPLICATIONS

DISSECTION

Technique to avoid
- Careful case selection to avoid excessive tortuosity

Strategy for resolution
- Avoid further rotablation if dissection identified
- Dissection management as for any PCI
TECHNIQUES TO AVOID COMPLICATIONS

BURR ENTRAPMENT

Technique to avoid
- Rare complication usually avoided with careful case selection and good technique

Strategy for resolution
- Controlled push and pull of rota shaft
- Position 2nd wire to allow balloon placement
- Cautious deep intubation with mother-in-child catheter for more support
- Cardiothoracic surgical resolution occasionally required
TECHNIQUES TO AVOID COMPLICATIONS

PERFORATION

Technique to avoid
- Commonly related to poor technique (oversizing of burr, too angulated, inappropriate speed)

Strategy for resolution
- Standard techniques to resolve any perforation including emergency pericardiocentesis and use of covered stents
CONCLUSIONS

CONTEMPORARY ROTATIONAL ATERECTOMY

- Rotablation for **plaque modification** instead of plaque debulking

- The technique of a smaller burr-to-artery ratio and speed between **135,000 & 180,000 rpm** has been improving outcomes and reducing complications